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Abstract. We here comment on a series of recent papers by Igi and Ishida and Block and Halzen that fit
high energy pp and p̄p cross section and ρ-value data, where ρ is the ratio of the real to the imaginary
portion of the forward scattering amplitude. These authors used finite-energy sum rules and analyticity
consistency conditions, respectively, to constrain the asymptotic behavior of hadron cross sections by an-
choring their high energy asymptotic amplitudes – even under crossing – to low energy experimental data.
Using analyticity, we here show that i) the two apparently very different approaches are in fact equivalent,
ii) that these analyticity constraints can be extended to give new constraints, and iii) that these constraints
can be extended to crossing-odd amplitudes. We also apply these extensions to photoproduction. A new
interpretation of duality is given.

About 40 years ago, Dolen, Horn and Schmid [1] used ana-
lyticity to derive finite-energy sum rules, FESRs, to deter-
mine Regge parameters (for what were then high energies)
from low energy data. Very recently, Igi and Ishida, again
using analyticity, developed FESRs for both pion–proton
scattering [2] and for pp and p̄p scattering [3] for rising cross
sections at present day energies. They exploited the very
precise experimental cross section information, σtot(pp)
and σtot(p̄p), available for low energy scattering, to con-
strain the coefficients of a real analytic amplitude fit they
made to the even (under crossing) cross section σ+(ν) at
high energies. Block and Halzen [4, 5], taking a very differ-
ent approach, required that both the hh (hadron–hadron)
and the h̄h low energy cross sections constrain the high en-
ergy fit, using

σtot(ν0) = σ̃(ν0) and
dσtot
dν
(ν0) =

dσ̃

dν
(ν0) ,

where σtot(ν0) is the experimental hh or h̄h total cross sec-
tion at laboratory energy ν0 and σ̃(ν0) is the total cross
section at ν0 obtained from the high energy parameteriza-
tion that was used to fit the high energy hh or h̄h cross
section data for hadron–hadron scattering; both even and
odd amplitudes (under crossing) were used. In the above,
the transition energy ν0 was chosen to be an energy just
above the resonance region, where the cross section energy
dependence is smooth and featureless. In particular, they
successfully fit γp [4] and separately, π+p, π−p and pp, p̄p
scattering [5] with a ln2 s parameterization. In a separate
work [6], they showed that they got identical numerical re-
sults using these constraints as they got from using the
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Igi and Ishida constraint [3], when fitting the same data
set of pp and p̄p high energy cross sections. We will show
below that the two approaches are equivalent, with both
following from analyticity requirements. In deriving their
FESR(2) for pp and p̄p scattering [3], Igi and Ishida [3]
took a slightly different philosophy from Dolen, Horn and
Schmid [1] in that they used terms for the high energy be-
havior that involved non-Regge amplitudes such as terms
in ln s and ln2 s, in addition to the Regge poles of [1]. They
chose for their crossing-even high energy forward scatter-
ing amplitude1 f̃+(ν) (we have f̃+(−ν) = f̃+(ν))

Imf̃+(ν) =
ν

m2

[
C0+C1 ln

( ν
m

)
+C2 ln

2
( ν
m

)

+BP′
( ν
m

)µ−1 ]
, (1)

Ref̃+(ν) =
ν

m2

[
π

2
C1+C2π ln

( ν
m

)

−BP′ cot
(πµ
2

)( ν
m

)µ−1 ]
, (2)

wherem is the proton mass and ν is the laboratory projec-
tile energy, with real dimensionless coefficients C0, C1, C2
and BP′ .

1 We have changed their notation slightly, replacing the am-
plitude F by f , and the energy N by ν0. In what follows, m is
the proton mass, p is the laboratory momentum and ν is the
laboratory energy. We have changed their notation for their di-
mensionless parameters, letting c0→C0, c1→C1, c2→C2 and
βP′ →BP′ .
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We comment that had they used the factor p/m2 rather
than ν/m2 in front of the right-hand sides of (1) and (2)
as required by analyticity for a real even amplitude, their
choice of amplitude would have been an even real analytic
function and f+(ν) would be zero for 0≤ ν ≤m, the pro-
ton mass, as required for a real analytic forward scattering
amplitude [7]. In the high energy limit – in (1) and (2) –

they replaced the laboratory momentum p=
√
ν2−m2 by

ν. Using the optical theorem, after letting p→ ν, they ob-
tained the even cross section from (1) as

σ̃+(ν) =
4π

m2
[
C0+C1 ln(ν/m)

+C2 ln
2(ν/m)+BP′(ν/m)

µ−1
]
, (3)

valid in the high energy region ν >∼ ν0. They used a Reggion
trajectory with µ= 0.5.
Block and Cahn [5] used a similar parameterization

to analyze pp and p̄p cross sections and ρ-values. Their
even real analytic forward high energy scattering ampli-
tude f̃+(ν) is given by:

Imf̃+(ν) =
p

4π

[
c0+ c1 ln

( ν
m

)
+ c2 ln

2
( ν
m

)

+βP′
( ν
m

)µ−1 ]
for ν ≥m,

Imf̃+(ν) = 0 for 0≤ ν ≤m, (4)

Ref̃+(ν) =
p

4π

[
π

2
c1+ c2π ln

( ν
m

)

−βP′ cot
(πµ
2

)( ν
m

)µ−1 ]
. (5)

Using the optical theorem, their even cross section is

σ̃+(ν) = c0+ c1 ln(ν/m)+ c2 ln
2(ν/m)+βP′(ν/m)

µ−1 ,
(6)

where here the coefficients c0, c1, c2 and βP′ have dimen-
sions of mb.
We now introduce f+(ν), the true even forward scat-

tering amplitude (which of course, we do not know!), valid
for all ν, where f+(ν) ≡ [fpp(ν)+fp̄p(ν)]/2, using forward
scattering amplitudes for pp and p̄p collisions. Using the
optical theorem, the imaginary portion of f+(ν) is related
to the even total cross section σeven(ν) by

Imf+(ν) =
p

4π
σeven(ν) , for ν ≥m. (7)

Next, define the odd amplitude νf̂+(ν) as the difference

νf̂+(ν)≡ ν
[
f+(ν)− f̃+(ν)

]
, (8)

which satisfies the unsubtracted odd amplitude dispersion
relation

Reνf̂+(ν) =
2ν

π

∫ ∞
0

Imν′f̂+(ν
′)

ν′2−ν2
dν′ . (9)

Since for large ν, the odd amplitude νf̂+(ν) ∼ να (α < 0)
by design, it also satisfies the super-convergence relation∫ ∞

0

Im νf̂+(ν) dν = 0 . (10)

In [1], the FESRs are given by
∫ ν0
0

νn Imf̂ dν =
∑ ν0

α+n+1

α+n+1
, n= 0, 1, . . . ,∞ ,

(11)

where f̂(ν) is crossing-even for odd integer n and crossing-
odd for even integer n. In analogy to the n= 1 FESR of [1],
which requires the odd amplitude νf̂(ν), Igi and Ishida
inserted the super-convergent amplitude of (8) into the
super-convergent dispersion relation of (10), obtaining∫ ∞

0

ν Im
[
f+(ν)− f̃+(ν)

]
dν . (12)

We note that the odd difference amplitude νImf̂+(ν) sat-
isfies (10), a super-convergent dispersion relation, even if
neither ν Imf+(ν) nor ν Imf̃+(ν) satisfies it. Since the in-

tegrand of (12), ν Im
[
f+(ν)− f̃+(ν)

]
, is super-convergent,

we can truncate the upper limit of the integration at the
finite energy ν0, an energy high enough for resonance be-
havior to vanish and where the difference between the two
amplitudes – the true amplitude f+(ν) minus f̃+(ν), the
amplitude which parameterizes the high energy behavior –
becomes negligible, so that the integrand can be neglected
for energies greater than ν0. Thus, after some rearrange-
ment, we get the even finite-energy sum rule (FESR)∫ ν0

0

νImf+(ν) dν =

∫ ν0
0

νImf̃+(ν) dν . (13)

Next, the left-hand integral of (13) is broken up into
two parts, an integral from 0 to m (the ‘unphysical’ re-
gion) and the integral from m to ν0, the physical region.
We use the optical theorem to evaluate the left-hand inte-
grand for ν ≥m. After noting that the imaginary portion
of f̃+(ν) = 0 for 0≤ ν ≤m, we again use the optical theo-
rem to evaluate the right-hand integrand, finally obtaining
the finite-energy sum rule FESR(2) of Igi and Ishida, in the
form: ∫ m

0

ν Imf+(ν) dν+
1

4π

∫ ν0
m

νp σeven(ν) dν

=
1

4π

∫ ν0
m

νp σ̃+(ν) dν . (14)

We now enlarge on the consequences of (14). We note
that if (14) is valid at the upper limit ν0, it certainly is also
valid at ν0+∆ν0, where ∆ν0 is very small compared to ν0,
i.e., 0≤∆ν0� ν0. Evaluating (27) at the energy ν0+∆ν0
and then subtracting (14) evaluated at ν0, we find

1

4π

∫ ν0+∆ν0
ν0

νp σeven(ν) dν =
1

4π

∫ ν0+∆ν0
ν0

νpσ̃+(ν) dν .

(15)
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Clearly, in the limit of ∆ν0→ 0, (15) goes into

σeven(ν0) = σ̃+(ν0) . (16)

Obviously, (16) also implies that

σeven(ν) = σ̃+(ν) for all ν ≥ ν0 , (17)

but is most useful in practice when ν0 is as low as possible.
The utility of (17) becomes evident when we recognize that
the left-hand side of it can be evaluated using the very ac-
curate low energy experimental crossing-even total cross
section data, whereas the right-hand side can use the phe-
nomenologist’s parameterization of the high energy cross
section. For example, we could use the cross section param-
eterization of (6) on the right-hand side of (17) and write
the constraint

[σpp(ν)+σp̄p(ν)] /2 = c0+ c1 ln(ν/m)+ c2 ln
2(ν/m)

+βP′(ν/m)
µ−1 , (18)

where σpp and σp̄p(ν) are the experimental pp and p̄p cross
sections at the laboratory energy ν. Equation (16) (or (17))
is our first important extension, giving us an analyticity
constraint, a consistency condition that the even high en-
ergy (asymptotic) amplitude must satisfy.
Reiterating, (17) is a consistency condition imposed by

analyticity that states that we must fix the even high en-
ergy cross section evaluated at energy ν ≥ ν0 (using the
asymptotic even amplitude) to the low energy experimen-
tal even cross section at the same energy ν, where ν0 is an
energy just above the resonances. Clearly, (16) also implies
that all derivatives of the total cross sections match, as well
as the cross sections themselves, i.e.,

dnσeven
dνn

(ν) =
dnσ̃+
dνn

(ν), n= 0, 1, 2, . . . ν ≥ ν0 ,

(19)

giving new even amplitude analyticity constraints. Of
course, the evaluation of (19) for n= 0 and n= 1 is effec-
tively the same as evaluating (19) for n= 0 at two nearby
values, ν0 and ν1 > ν0. It is up to the phenomenologist to
decide which experimental set of quantities it is easier to
evaluate.
We emphasize that these consistency constraints are

the consequences of imposing analyticity, implying several
important conditions.

1. The new constraints that are derived here tie together
both the even hh and h̄h experimental cross sections
and their derivatives to the even high energy approxi-
mation that is used to fit data at energies well above the
resonance region. Analyticity then requires that there
should be a good fit to the high energy data after using
these constraints, i.e., the χ2 per degree of freedom of
the constrained fit should be ∼ 1, if the high energy
asymptotic amplitude is a good approximation to the
high energy data. This is our consistency condition de-
manded by analyticity. If, on the other hand, the high
energy asymptotic amplitude would have given a some-
what poorer fit to the data when not using the new

constraints, the effect is tremendously magnified by uti-
lizing these new constraints, yielding a very large χ2

per degree of freedom. As an example, both Block and
Halzen [4] and Igi and Ishida [2, 3] conclusively rule out
a ln s fit to both π±p and pp and p̄p cross sections and
ρ-values because it has a huge χ2 per degree of freedom.

2. Consistency with analyticity requires that the results
be valid for all ν ≥ ν0, so that the constraint doesn’t
depend on the particular choice of ν.

3. No evaluation of the non-physical integral
∫m
0
ν Imf+

(ν) dν used in (14) is needed for our new constraints.
Thus, the exact value of non-physical integrals, even if
very large, does not affect our new constraints.

4. As stated before, ν0 is an energy slightly above the res-
onance region where the energy behavior of the cross
section is smooth and featureless. Duality previously
has been used to state that the average value of the
energy moments of the imaginary portion of the true
amplitude over the energy interval 0 to ν0 are the same
as the average value of the energy moments of the high
energy approximation amplitude over the same inter-
val [1], which is illustrated in Fig. 1.
Here, we present a new interpretation of duality – we
have demonstrated that analyticity requires that the
even cross sections and their derivatives deduced from
the even dual high energy amplitude at energy ν0 are
the same as those cross section and their derivatives
found from low energy experimental cross section data
at ν0, under the caveat that the dual amplitude gives
a good representation of the high energy data. Later,
we will demonstrate that this is also true for odd ampli-
tudes, so that our new duality interpretation is true for
hh and h̄h cross sections as well.

Fig. 1. The integrands of the FESR2 rule. The open circles are
ν2×σγp(exp’t), the dash-dotted curve is ν

2×σγp(fit), and the
dashed curve is ν2×σ0, all in mb (GeV)

2, versus
√
s, in GeV.

σ0 = c0+ c1 ln(ν/m)+ ln
2(ν/m)+βP′(ν/m)

−.5 is the theor-
etical high-energy fit of Block and Halzen [4], σγp(fit) is the
resonance cross section fit of Damashek and Gilman [9], and
σγp(exp’t) are the experimental data in the resonance region.
The transition energy was

√
s0 = 2.01 GeV
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Having restricted ourselves so far to even amplitudes,
let us now consider odd amplitudes, defining f−(ν) as
the true odd forward scattering amplitude, valid for all ν
(again, which we do not know!). In terms of the forward
scattering amplitudes for pp and p̄p collisions, we define
f−(ν)≡ [fpp(ν)−fp̄p(ν)]/2.Using the optical theorem, the
imaginary portion of the odd amplitude is related to the
physical odd (under crossing) total cross section σodd by

Imf−(ν) =
p

4π
σodd(ν), for ν ≥m . (20)

We now define a new super-convergent odd amplitude
f̂−(ν) as

f̂−(ν)≡ f−(ν)− f̃−(ν) , (21)

where f̃−(ν) is our high energy parameterization ampli-
tude, related to the odd (under crossing) high energy cross
section σ−(ν) by

Imf̃−(ν) =
p

4π
σ−(ν), for ν ≥m,

Imf̃−(ν) = 0 , for 0≤ ν ≤m. (22)

The super-convergent amplitude of (21) satisfies the
unsubtracted odd amplitude dispersion relation

f̂−(ν) =
2ν

π

∫ ∞
0

Im f̂−(ν
′)

ν′2−ν2
dν′ , (23)

and, as before, it also satisfies the super-convergent disper-
sion relation ∫ ∞

0

Im f̂−(ν) dν = 0 . (24)

Again, we can truncate the integral at ν0, so that∫ ν0
0

Im f̂−(ν) dν = 0 , (25)

or ∫ ν0
0

Im f−(ν) dν =

∫ ν0
0

Im f̃−(ν) dν . (26)

After applying the optical theorem, using (20) on the left-
hand side and (22) on the right-hand side of (26), we
write our new n = 0 odd finite-energy sum rule, called
FESR(odd), as

∫ m
0

Imf−(ν) dν+
1

4π

∫ ν0
m

pσodd(ν) dν

=
1

4π

∫ ν0
m

pσ̃− dν . (27)

Following the same line as before, it is straightforward
to show for odd amplitudes that FESR(odd) implies that

dnσodd
dνn

(ν) =
dnσ̃−
dνn

(ν), n= 0, 1, 2, . . . , ν ≥ ν0 ,

(28)

where σ̃−(ν) is the odd (under crossing) high energy cross
section approximation and σodd(ν) is the experimental odd
cross section.
Thus, we have now derived new analyticity constraints

for both even and odd cross sections, allowing us to con-
strain both hh and h̄h scattering. All of the conditions 1–4,
enumerated earlier for even amplitudes, are now valid for
odd amplitudes, and hence, for both hh and h̄h scattering.
Block and Halzen [5] expanded upon these ideas, using

linear combinations of cross sections and derivatives to an-
chor both even and odd cross sections. A total of 4 con-
straints, 2 even and 2 odd constraints, were used by them
in their successful ln2 s fit to pp and p̄p cross sections and
ρ-values, where they first did a local fit to pp and p̄p
cross sections and their slopes in the neighborhood of ν0 =
7.59GeV (corresponding to

√
s0 = 4GeV), to determine

the experimental cross sections and their first derivatives
at which they anchored their fit. The data they used in the
high energy fit were pp and p̄p cross sections and ρ-values
with energies

√
s≥ 6 GeV. Introducing the even cross sec-

tion σ0(ν), they parameterized the high energy cross sec-
tions and ρ-values [5] as

σ0(ν) = c0+ c1 ln
( ν
m

)
+ c2 ln

2
( ν
m

)
+βP′

( ν
m

)µ−1
,

(29)

σ±(ν) = σ0
( ν
m

)
± δ
( ν
m

)α−1
, (30)

ρ±(ν) =
1

σ±

{
π

2
c1+ c2π ln

( ν
m

)

−βP′ cot
(πµ
2

)( ν
m

)µ−1
+
4π

ν
f+(0)

± δ tan
(πα
2

)( ν
m

)α−1}
. (31)

We note that the even coefficients c0, c1, c2 and βP′ are
the same as those used in (18). The real constant f+(0) is
the subtraction constant [7]2 required at ν = 0 for a singly-
subtracted dispersion relation. They also used µ= 0.5. The
odd cross section in (30) is given by

δ
( ν
m

)α−1
, (32)

described by two parameters, the coefficient δ and the
Regge power α. We define

∆σ(ν0)≡
σ+(ν0/m)−σ−(ν0/m)

2
= δ(ν0/m)

α−1 ,

(33)

∆m(ν0)≡
1

2

(
dσ+

d(ν/m)
−
dσ−

d(ν/m)

)
ν=ν0

= δ
{
(α−1)(ν0/m)

α−2
}
, (34)

in terms of the odd experimental values at ν0. Since now
δ and α are completely fixed by the experimental quan-
tities ∆σ(ν0) and ∆m(ν0), these two analytic constraints

2 For the reaction γ+p→ γ+p, it is fixed as the Thompson
scattering limit f+(0) =−αm=−3.03 µbGeV [9].
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severely restrict the phenomenologist using this particular
choice of amplitude. If (32) is not a particularly good rep-
resentation of the high energy data, the χ2 from the fit will
be very poor. On the other hand, if the χ2 is very good –
as found by Block and Halzen [5] – it provides great confi-
dence in the choice of (32) as the imaginary portion of the
asymptotic odd amplitude.
Finally, to get a physical picture of what the new an-

alyticity constraints look like compared to FESR(2), we
apply (29), the even cross section, to spin-averaged γp scat-
tering. For the γp system, the left-hand integral of (14),
involving experimental cross sections σγp(ν) in the reson-

ance regions (ν ≤ ν0), is now
∫ ν0
0 ν

2σγp(ν) dν.As a function
of the center-of-mass energy

√
s, Fig. 1 shows 3 separate

plots: the experimental resonance cross section data mul-
tiplied by ν2 as the open circles; the σγp(fit) – a fit to the
resonance regionmade byDamashek andGilman [9] – after
multiplication by ν2, as the dashed-dot curve; and, finally,
the cross section σ0×ν2, where σ0 is the even high energy
cross section parameterization from Block and Halzen [4],
as the dashed curve. Block and Halzen used a transition
energy ν0 = 1.68GeV (

√
s0 = 2.01GeV) in their fit, requir-

ing that their fit match the experimental cross section and
first derivative at ν0. Note that the resonance data oscil-
late about the smooth high energy fit, with the oscillations
gradually damping out so that experimental data approach
the high energy fit as we near the transition energy of√
s0 = 2.01GeV.

In conclusion, we now have new analyticity constraints
for both even and odd amplitudes – additional tools for
the phenomenologist to use in fitting hadron–hadron total

cross sections and ρ-values. In practice, these new analyt-
icity constraints are much simpler to use than FESRs. The
fits are anchored by the experimental cross section data
near the transition energy ν0, so neither complicated nu-
merical integrations nor evaluation of unphysical regions
are required. These consistency constraints are due to the
application of analyticity to finite-energy integrals – the
analog of analyticity giving rise to traditional dispersion
relations when it is applied to integrals with infinite up-
per limits – giving us a new interpretation of the duality
principle.
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